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A periodically driven quantum capacitor may function as an on-demand single-electron source as it has
recently been demonstrated experimentally. However, the accuracy at which single electrons are emitted is not
yet understood. Here we consider a conceptually simple model of a quantum capacitor and find analytically the
noise spectrum as well as the counting statistics of emitted electrons. We find that the failure rate of the
capacitor can be arbitrarily small when operated under favorable conditions. Our theoretical predictions may be
tested in future experiments.
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I. INTRODUCTION

Controllable single-electron sources are at the forefront of
current research on nanoscale electronics. Systems that gen-
erate quantized electrical currents, for example, quantum
capacitors1–3 and quantum pumps,4 are of great interest due
to their potential applications in metrology5 and quantum
information processing6 as well as in basic research on
single- and few-electron physics in mesoscopic structures.
The quantum capacitor constitutes one archetype of a single-
electron emitter. The capacitor consists of a nanoscale cavity
that exchanges particles with a reservoir through a narrow
constriction, a so-called quantum point contact. When the
capacitor is subject to periodic voltage modulations, single-
electron emission and absorption occur at gigahertz frequen-
cies as it has recently been demonstrated experimentally.1 It
has also been verified7 that the relaxation resistance of the
capacitor is quantized in units of h /2e2 independently of
microscopic details, in agreement with theoretical
predictions.8 The experiments indicate that the quantum ca-
pacitor may function as an on-demand electron source that
ideally can be controlled down to the level of single elec-
trons.

Despite the experimental and theoretical advances, the ac-
curacy at which the quantum capacitor emits electrons is still
not well understood. This is an important question for poten-
tial applications and it may ultimately be the criterion that
determines if the quantum capacitor becomes an integrated
part of future nanoscale electronics operating at gigahertz
frequencies. In this work, we analyze the accuracy of the
quantum capacitor as a single-electron source. To this end, it
is necessary not only to study the mean current of electrons
emitted by the capacitor but also the fluctuations of the cur-
rent around the mean. We describe the capacitor using a
simple model which has been shown to reproduce noise mea-
surements in numerical simulations of the recent experiment
reported in Ref. 9. We derive an analytic expression for the
noise spectrum that fully accounts for the measurements.
Furthermore, we characterize fluctuations in the current of
emitted electrons by evaluating the counting statistics and
find that the failure rate of the device under optimal operat-
ing conditions can be vanishingly small.

II. QUANTUM CAPACITOR

The system is shown schematically in Fig. 1�a�. An edge

state is connected to the capacitor via a quantum point con-
tact whose transmission probability p can be controlled with
external gates. With the quantum point contact pinched off,
the capacitor has a discrete energy spectrum with typical
level spacing �, which is much larger than temperature, and
�o=h /� is the time it takes an electron to travel a full round
along the edge of the capacitor. As the quantum point contact
is opened, electronic states of the capacitor with energies
below the Fermi level of the external reservoir are filled. We
now consider the situation where a steplike gate voltage U�t�
periodically shifts the highest occupied level above and be-
low the Fermi level of the reservoir. The period T is much
longer than �o and the amplitude 2U0 is on the order of the
level spacing � /e. This causes periodic emission of coherent
single-electron wave packets from the capacitor to the out-
going edge state, followed by refilling from the incoming
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FIG. 1. �Color online� Quantum capacitor. �a� An edge state is
connected to the capacitor via a quantum point contact. The peri-
odic voltage U�t� applied to the capacitor causes emission and ab-
sorption of single electrons to and from the edge state. �b� Periodic
voltage U�t� and resulting current �I�t�� as functions of time. Nu-
merical and analytical results are shown. �c� Analytic result for the
noise spectrum PI��=2� /T� as a function of the correlation time �
�see text�. Experimental results have been adapted from Ref. 9.
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edge state as it was recently demonstrated experimentally.1

In this work, we study the accuracy of single-electron emis-
sion as the ratio of the period T and the escape, or correla-
tion, time � �defined below� is varied or, equivalently, as a
function of the dimensionless parameter �=e−T/2�.

III. MODEL

The charge dynamics of the capacitor follows a simple
model that recently was shown to reproduce measured data
in numerical simulations of the experiment reported in Ref.
9. The absorption phase of duration T /2 �denoted by ¬ in
Fig. 1�b�� is discretized in time steps of length �o during each
of which a single electron can enter the capacitor with prob-
ability p. The emission phase �denoted by −� is similarly
discretized in time, and in each time step the probability of
emitting an electron is p. With the amplitude of the periodic
driving being on the order of the level spacing, higher-lying
states can safely be neglected and only a single �additional�
electron can occupy the capacitor. This semiclassical picture
can be formulated as a master equation in discrete time for
the probability of the capacitor to be occupied by an electron.
Setting the electron charge e=1 in the following, this prob-
ability is equal to the average �additional� charge of the ca-
pacitor �Q�, where Q=0,1. The master equation determines
the evolution of the average charge after one time step and
reads9

�Q�tk+1,l�� = �p�1 − �Q�tk,l��� + �Q�tk,l�� ¬

�1 − p��Q�tk,l�� −
� , �1�

where we have used that 1− �Q� is the probability for the
capacitor to be empty and t= tk,l denotes time at the kth time
step during the lth period. The absorption �emission� phase
¬ �−� corresponds to k=1,2 , . . . ,K �K+1,K+2, . . . ,2K�.
Although, we do not derive the master equation here, some
insights into its origin can be found by considering the cur-
rent as it was calculated in Ref. 2 using scattering matrices.
The current was shown to consist of one steplike term with
step length �o and one oscillatory part with period �o. The
oscillatory part is due to quantum interference and vanishes
with increasing temperatures. At arbitrary temperature, only
the first term remains after integration of the current over the
time step �o, which leads to the master equation above. As in
the experiment9 �with the measurement frequency equal to
the driving frequency 2� /�=T=60�o�, we consider time
scales that are much longer than �o for which the master
equation provides a quasicontinuous description.

IV. AVERAGE CHARGE AND CURRENT

It is straightforward to solve the master equation �Eq. �1��
for the average charge �Q� and thus the net current

running out of the capacitor �I�t��	−�Q̇�t��
��Q�t��
− �Q�t+�o��� /�o. The average charge can be cast in a form
similar to that of an RC circuit reading,

�Q�tk,l�� = � 1 − �le
−�tk,l−lT�/�

¬

	le
−�tk,l−�l+ 1

2�T�/� −
� , �2�

where we have defined 	l=1 / �1+��+
�2l and
�l=1 / �1+��−
�2l−1 with 
 depending on the initial condi-
tions at the time when the periodic driving is turned on. The
correlation time �	�o / ln�1 / �1− p�� determines the time
scale over which the system loses memory about the initial
conditions encoded in 
 and �Q� becomes periodic in time.
Figure 1�b� illustrates the excellent agreement between the
current �I�t�� obtained from the analytic expression �2� and
our numerical simulations based on Eq. �1�, including the
initial transient behavior. The mean charge emitted during
the emission phase is tanh�T /4�� �see also Eqs. �3� and �5��.

V. NOISE SPECTRUM

In the experiment, the Fourier transform of the

time-averaged correlation function ��I�t��I�t+ t0��
t

with
�I�t�= I�t�− �I�t�� was measured.9 The noise spectrum is then

PI���=�−�
+�dt0��I�t��I�t+ t0��

t
ei�t0 or PI���
�2PQ��� in

terms of the corresponding charge correlation function
PQ���. We evaluate the charge correlation function by
noting that �Q�t�Q�t+ t0�� is the joint probability for
the capacitor to be charged with one electron at time t and at
time t+ t0. Using conditional probabilities, we write

�Q�t�Q�t+ t0��= �Q�t���Q̃�t+ t0��, where �Q̃�t+ t0�� is
the probability that the capacitor is charged with one electron
at time t+ t0 given that it is charged at time t. For t00,

�Q̃�t+ t0�� can be found by propagating forward in time the

condition �Q̃�t��=1 using the master equation �Eq. �1��.
Similar reasoning applies to the case t0�0. Integrating over
t, the time-averaged charge correlation function becomes

��Q�t��Q�t+ t0��
t
= �

Te−�t0�/� tanh� T
4� �, and finally, we obtain

the noise spectrum,

PI��� =
2

T
tanh T

4�
� �2�2

1 + �2�2 . �3�

Figure 1�c� shows our analytic expression for the noise
spectrum together with experimental results adapted from
Ref. 9. The analytic result captures the experiment over the
full range of correlation times � and interpolates between the
two limiting cases discussed in Ref. 9. In the shot noise
regime ��T ��
1�, the probability of emitting and reab-
sorbing an electron during a period is very small, and elec-
tron emission becomes rare. In this regime, we find
PI���→1 /2� in agreement with Ref. 9. In the phase noise
regime ��T ��
0�, the probability of emitting and absorb-
ing an electron during each period is close to 1, and the main
source of finite-frequency fluctuations is the random times of
emission and absorption within a period. In this regime, we
find PI���→ 2

T
�2�2

1+�2�2 as suggested in Ref. 9. The zero-
frequency limit PI�0�=0 reflects that charge does not accu-
mulate on the capacitor over time once �Q� has become pe-
riodic in time.
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VI. COUNTING STATISTICS

While the noise spectrum �Eq. �3�� is related to the net
current running out of the capacitor �including both absorp-
tion and emission of electrons�, it is relevant to characterize
the emission process alone in order to quantify the accuracy
of the capacitor as a single-electron source. To this end, we
consider the counting statistics of emitted electrons and
hence introduce the probabilities Pj�n , l� that the capacitor is
occupied by j=0,1 �additional� electrons while n
electrons have been emitted after l periods. The probability
distribution for the number of emitted electrons is
P�n , l�= P0�n , l�+ P1�n , l� and the corresponding cumulants
��nm�� of the distribution are defined through the cumulant
generating function �CGF� S�� , l�	 ln��nP�n , l�ein�� as
��nm��=��i��

m S�� , l� ��→0. The CGF can be written as
S�� , l�=ln�1 ·P�� , l��, where 1= �1,1�T and P�� , l�
= �P1�� , l� , P0�� , l��T with Pj�� , l�=�nPj�n , l�ein�, j=0,1.
The evolution of the probability vector after one period of
the driving is obtained from the master equation �Eq. �1��
and reads P�� , l+1�=A���P�� , l� with A���
=L1

T/2�oL2
T/2�o���, where L1= � 1 p

0 1−p � and L2���= � 1−p 0
pei� 1 �, and

we have introduced the counting field � in the off-diagonal
element of L2 corresponding to electron emission.10 The
CGF after l periods is then S�� , l�=ln�1 ·Al���Pin� with Pin
being the �-independent initial condition as counting begins.
For a large number of periods, Al��� is dominated by the
largest eigenvalue of A���,

���� = � + ei�1 − �

2
�1 − � + ��1 − ��2 + 4�e−i�� �4�

such that S�� , l�→ l ln������.11 The expression for the CGF
is a powerful result that allows us to fully characterize fluc-
tuations in the current of emitted electrons.

VII. CUMULANTS

The cumulants of the current are defined as the constant
ratio ��Im��= ��nm�� / l after a large number of periods. The
first three cumulants are

��I�� =
1 − �

1 + �
= tanh�T/4�� ,

��I2�� =
2�

�1 + ��2 ��I�� ,

��I3�� =
2��4� − �2 − 1�

�1 + ��4 ��I�� . �5�

Higher-order cumulants can be approximated by noting
that the CGF has square-root branch points at
i��=ln��1−��2 /4��� i�, close to which the CGF
behaves as S�� , l�
2l�i��− i�. Following Ref. 12, we find
for large orders ��Im��


4Bm,−1/2

�i�+�m−1/2 cos��m−1 /2�arg�i�+�� with
Bm,�=���+1� . . . ��+m−1�. The asymptotic expression
gives excellent agreement with exact results for the higher-
order cumulants as we have checked.

Figure 2 illustrates the good agreement between numeri-
cal simulations of the first four cumulants and our analytical
results. The first cumulant �the mean current� is equal to the
average charge emitted during one period which varies from
0 in the shot noise regime ��
1� to 1 in the phase noise
regime ��
0�. In the shot noise regime, the first few cumu-
lants can be written as ��Im��
�1 /2�m−1��I��, indicating that
the transport statistics is similar to that of a Poisson process
with an effective charge of 1/2—this is characteristic for a
Poisson process in which only every second event results in
emission. In the phase noise regime, the mean current is
close to 1 and the first few cumulants are close to zero since
electrons are emitted in an orderly manner due to the peri-
odic driving. Low-frequency fluctuations in the stream of
emitted electrons arise only in the rare cases when the ca-
pacitor is not charged in the absorption phase or when it fails
to emit in the emission phase. We predict the occurrence of
such failures in the phase noise regime by expanding the
CGF to lowest order in � as S�� , l�
 l�i�+2��e−i�−1��. The
first term corresponds to a deterministic process in which one
electron is emitted in each cycle. The second term is the sum
of two independent Poisson processes describing “cycle
missing” events occurring with rate � per period, either be-
cause the capacitor is not charged or because it fails to emit.
Of course, if the capacitor is not charged it also fails to emit,
however, such correlations do not enter to lowest order in �.
In the crossover from the shot noise to the phase noise re-
gime, the third cumulant changes from positive to negative
before it vanishes in the phase noise regime. The negative
third cumulant signals a left-skewed distribution caused by
the mean current ��I�� being close to the upper limit of 1,
which cuts off the distribution to the right. The fourth cumu-
lant goes through a region with negative values followed by
a region with positive values before vanishing in the phase
noise regime. The negative �positive� fourth cumulant indi-
cates a sub-Gaussian �super-Gaussian� distribution with light
�heavy� tails. Higher-order cumulants become increasingly
oscillating functions of � as recently predicted.12

VIII. LARGE DEVIATION FUNCTION

The above statements can be further corroborated
by calculating the full distribution function
P�I , l�→�−�

� d�
2�el�ln������−i�I� of the current I	n / l measured

after many periods using a saddle-point approximation.10,11

This procedure yields

P�I,l� 

���1 + I�

1 − I
�l� �1 − I2��1 − ��2

4�I2 �Il

��I�1 − I2�l
. �6�

In Fig. 3, we show our analytic result together with numeri-
cal simulations. For comparison, we also show a Gauss dis-
tribution with mean and variance �second cumulant� obtained
from Eq. �5�. The analytic result describes our numerics very
well. Close to the phase noise regime ��
0�, the distribution
function is clearly left skewed in accordance with the third
cumulant being negative in Fig. 2. Additionally, the distribu-
tion is super-Gaussian with heavy tails in comparison to the
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Gauss distribution. As the shot noise regime is approached,
the distribution becomes sub-Gaussian and light tailed. These
qualitative changes are reflected in the sign change in the
fourth cumulant seen in Fig. 2. In the phase noise regime, the
distribution is 1 for I=1 and zero otherwise. This can be
understood by considering the expected mean number of
cycle missing events in our numerical simulations. After
l=50 periods of the driving, the expected mean number
2le−T/2� is still vanishingly small for � /T=0.01, and we do
not observe a single cycle missing event during 50.000 nu-
merical realizations as seen in Fig. 3. The large deviation
function was recently measured in single-electron transport
through a Coulomb-blockade quantum dot,13 and the results
presented in Fig. 3 may serve as an experimental test of our
model in similar measurements on a quantum capacitor.

IX. CONCLUSIONS

We have analyzed the quantum capacitor and found ana-
lytically the noise spectrum which fully accounts for recent

measurements. We have characterized the accuracy of the
capacitor as a single-electron source through calculations of
the counting statistics and found that the failure rate can be
arbitrarily small under favorable operating conditions. Our
results are important for possible applications of quantum
capacitors in nanoscale electronics operating at gigahertz fre-
quencies and our predictions may be tested in future experi-
ments.
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